val hello : obj

Full name: CDocument.hello
Multiple items
val string : value:'T -> string

Full name: Microsoft.FSharp.Core.Operators.string

--------------------
type string = System.String

Full name: Microsoft.FSharp.Core.string
Multiple items
val seq : sequence:seq<'T> -> seq<'T>

Full name: Microsoft.FSharp.Core.Operators.seq

--------------------
type seq<'T> = System.Collections.Generic.IEnumerable<'T>

Full name: Microsoft.FSharp.Collections.seq<_>
Multiple items
module List

from Microsoft.FSharp.Collections

--------------------
type List<'T> =
  | ( [] )
  | ( :: ) of Head: 'T * Tail: 'T list
  interface IEnumerable
  interface IEnumerable<'T>
  member Head : 'T
  member IsEmpty : bool
  member Item : index:int -> 'T with get
  member Length : int
  member Tail : 'T list
  static member Cons : head:'T * tail:'T list -> 'T list
  static member Empty : 'T list

Full name: Microsoft.FSharp.Collections.List<_>
val map : mapping:('T -> 'U) -> list:'T list -> 'U list

Full name: Microsoft.FSharp.Collections.List.map
module Array

from Microsoft.FSharp.Collections
val sum : array:'T [] -> 'T (requires member ( + ) and member get_Zero)

Full name: Microsoft.FSharp.Collections.Array.sum
val id : x:'T -> 'T

Full name: Microsoft.FSharp.Core.Operators.id
type 'T list = List<'T>

Full name: Microsoft.FSharp.Collections.list<_>
type unit = Unit

Full name: Microsoft.FSharp.Core.unit
Multiple items
val int : value:'T -> int (requires member op_Explicit)

Full name: Microsoft.FSharp.Core.Operators.int

--------------------
type int = int32

Full name: Microsoft.FSharp.Core.int

--------------------
type int<'Measure> = int

Full name: Microsoft.FSharp.Core.int<_>
val map : mapping:('T -> 'U) -> array:'T [] -> 'U []

Full name: Microsoft.FSharp.Collections.Array.map
Multiple items
val int64 : value:'T -> int64 (requires member op_Explicit)

Full name: Microsoft.FSharp.Core.Operators.int64

--------------------
type int64 = System.Int64

Full name: Microsoft.FSharp.Core.int64

--------------------
type int64<'Measure> = int64

Full name: Microsoft.FSharp.Core.int64<_>

MBrace

large-scale programming with F#

About Me

  • Gian Ntzik (aka Jan Dzik)
  • @anirothan
  • Imperial College, Nessos

About Nessos

  • ISV based in Athens, Greece
  • .NET experts
  • Open source F# projects
    • Mbrace
    • FsPickler, Streams, LinqOptimizer, etc
  • @NickPalladinos, @krontogiannis, @eiriktsarpalis

https://github.com/nessos

http://www.m-brace.net/

Slides and code

https://github.com/anirothan/FPDaysMBrace

What is MBrace?

MBrace: A Programming Model

  • Large-scale distributed computation and big data
  • Declarative, compositional, higher-order

Based on F# computation expressions

Inspired by F# asynchronous workflows

Cloud workflows

Express distributed computation.

Hello World!

Hello World!

1: 
2: 
3: 
4: 
let hello = cloud {
    return "Hello World!"
}
val hello: Cloud<string>

MBrace: A Distributed Runtime

  • Implemented in F#
  • Elastic, fault-tolerant, multitasking

Cloud workflow composition

Express distribution and parallelism patterns

Sequential Composition

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
let first = cloud { return 15 }
let second = cloud { return 17 }

cloud {
    let! x = first
    let! y = second
    return x + y
}

Parallel Composition

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
val (<||>): Cloud<'T> -> Cloud<'S> -> Cloud<'T * 'S>

cloud {
    let first = cloud { return 15 }
    let second = cloud { return 17 }
    let! x, y = first <||> second
    return x + y
}

Parallel Composition

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
val Cloud.Parallel: seq<Cloud<'T>> -> Cloud<'T []>

cloud {
    let sqr x = cloud { return x * x }
    let jobs = List.map sqr [1..10000]
    let! sqrs = Cloud.Parallel jobs
    return Array.sum sqrs
}

MapReduce cloud workflow

MapReduce

 1: 
 2: 
 3: 
 4: 
 5: 
 6: 
 7: 
 8: 
 9: 
10: 
11: 
12: 
13: 
14: 
15: 
let rec mapReduce (mapF: 'T -> 'R) 
                  (reduceF: 'R -> 'R -> 'R)
                  (id : 'R) (input: 'T list) = 
    cloud {
        match input with
        | [] -> return id
        | [value] -> return mapF value
        | _ ->
            let left, right = List.split input
            let! r, r' = 
                (mapReduce mapF reduceF id left)
                    <||> 
                (mapReduce mapF reduceF id right)
            return reduceF r r'
    }

About that MapReduce

It's a naive implementation.

About that MapReduce

Can you spot potential issues/problems?

Communication Overhead

Processed data needlessly passed copied arround worker machines.

Granularity

  • Schedulling overhead of binary decomposition
  • Cluster size not considered
  • Ignoring multicore capacity of workers

Distributing Data

Cloud Storage Backends

Azure, SQL, Filesystem

Distributed Data Primitives

CloudRef

  • Conceptually similar to ref cells
  • Allocation/dereference effected in cloud workflows
  • Immutable/mutable

CloudRef

1: 
2: 
3: 
CloudRef.New: 'T -> Cloud<CloudRef<'T>>

CloudRef.Read: CloudRef<'T> -> Cloud<'T>

Distributed Types

Distributed Trees

1: 
2: 
3: 
4: 
type CloudTree<'T> =
    | EmptyLeaf
    | Leaf of 'T
    | Branch of ICloudRef<CloudTree<'T>> * ICloudRef<CloudTree<'T>>

CloudTree based MapReduce

 1: 
 2: 
 3: 
 4: 
 5: 
 6: 
 7: 
 8: 
 9: 
10: 
11: 
let rec createTree (input: 'T list) = cloud {
    match input with
    | [] -> return! CloudRef.New EmptyLeaf
    | [value] -> return! CloudRef.New (Leaf value)
    | _ ->
        let left, right = List.split input
        let! l, r = 
            (createTree left) <||> (createTree right)

        return! CloudRef.New <| Branch(l, r)
}

CloudTree based MapReduce

 1: 
 2: 
 3: 
 4: 
 5: 
 6: 
 7: 
 8: 
 9: 
10: 
11: 
12: 
13: 
14: 
15: 
let rec mapReduceTree (mapF: 'T -> 'R) 
                      (reduceF: 'R -> 'R -> 'R)
                      (id : 'R) (input: ICloudRef<CloudTree<'T>>) = 
    cloud {
        let! tree = CloudRef.Read input
        match tree with
        | EmptyLeaf -> return id
        | Leaf value -> return mapF value
        | Branch(left, right) ->
            let! l, r =
                (mapReduceTree mapF reduceF id left)
                               <||>
                (mapReduceTree mapF reduceF id right)
            return reduceF l r
    }

CloudFile

Distributed binary blob

CloudFile

1: 
2: 
3: 
CloudFile.New: (Stream -> unit) -> Cloud<CloudFile>

CloudFile.Read: CloudFile -> (Stream -> 'T) -> Cloud<'T>

Controlling Granularity

Cluster size

1: 
Cloud.GetWorkerCount: unit -> Cloud<int>

Local execution of cloud workflows

1: 
Cloud.ToLocal: Cloud<'T> -> Cloud<'T>

MapReduce revisited

F# Streams

A lightweight F#/C# library for efficient functional-style pipelines on streams of data.

Insipired by Java 8 Streams

Typical Pipeline Pattern

1: 
source |> inter |> inter |> inter |> terminal
  • inter : intermediate (lazy) operations, e.g. map, filter
  • terminal : produces result or side-effects, e.g. reduce, iter

Pull vs Push

1: 
source |> inter |> inter |> inter |> terminal
  • F# Seq / IEnumerable pull
  • Streams push

Example

1: 
2: 
3: 
4: 
5: 
let data = [| 1..10000000 |] |> Array.map int64
Stream.ofArray data //source
|> Stream.filter (fun i -> i % 2L = 0L) //lazy
|> Stream.map (fun i -> i + 1L) //lazy
|> Stream.sum //eager, forcing evaluation

4x speedup compared to Seq. or Array. pipelines

CloudStream

Conclusions

  • Declartive, composable cloud workflows
  • Explicit & dynamic control of parallelism and granularity
  • F# interactive

Future Work

Decouple Programming Model From Runtime

https://github.com/mbraceproject/MBrace.Core

Cloud.FromContinuations

Azure Worker Roles

https://github.com/mbraceproject/MBrace.Azure

Mono Support

Thank you

https://github.com/mbraceproject

http://www.m-brace.net/

Questions?